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Abstract: The incidence-adjacent vertex distinguishing equitable total coloring of the Myceilski
graphs of path, cycle, wheel and fan are discussed, and of which the incidence-adjacent vertex
distinguishing equitable total chromatic numbers are confirmed efficiently by using constructive
method and color adjusting technique base on the structure quality of the graphs. This method of the
research provides an important reference for us to study the graph coloring problem with structural
relations.

1. Introduction

The graph coloring problem proposed by network optimization and information technology is one
of the important research contents of graph theory. In order to expand the application field of the
coloring theory of graphs, the concepts of the incidence adjacent vertex distinguishing total coloring
and the incidence adjacent vertex distinguishing equitable total coloring are put forward
successively in[1,2]. The new coloring concept is widely concerned by the graph theorists. It was
published that many results of the incidence adjacent vertex distinguishing total coloring total
coloring of graphs such as spider graphs and fishing-net graphs in [3], crown graphs �� ∙ ��、�� ∙
�� and �� ∙ �� in [4], join graphs ��⋁�� , ��⋁�� in [5], Mycielski graphs of path, fan and
star in [6], some direct product graphs [7]. In [8] the incidence adjacent vertex distinguishing

equitable total chromatic numbers of windmill graph �3
� , ��,4 and gear graph ��� are given.

In this paper, we research the incidence-adjacent vertex distinguishing equitable total coloring of
Mycielski graphs of path, cycle, fan and wheel and of which the incidence-adjacent vertex
distinguishing equitable total chromatic numbers are confirmed. And we will testify that the
conjecture in [2] for Mycielski graphs is true, say, the incidence-adjacent vertex distinguishing
equitable total chromatic numbers of the Mycielski graphs are not more than سه�∆ � ) +2.
Suppose that the vertex � coloring set is � � � � � � � �� �� � � � and the

complementary set of � � in � � �ሼ, �,�, �t is that � � � �h� � . For other unspecified
definitions and notations such as the Myceilski graph of � in this article, we refer to Bondy and
Murty[9].
Definition 1.1 [2] Suppose � is a � -I-AVDTC of simple connect graph ���,�) (|���) |� 2),

satisfying
for � �,� � �ሼ, �,�,�t, and � � �, we have
���� � ���� � ሼ,
then we call � is the incidence-adjacent vertex distinguishing equitable total coloring of �

(abbreviated to �-I-AVDETC), and call
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��t�
� ��) � ��� � � �� �-I-AVDETCt

the adjacent vertex distinguishing equitable I-total chromatic number of � , where �� � �� � �� ,
�� � ���� � � � , � � � �t, and �� � �t�t � � � ,� t � �t.
By the above definition, we obviously have

��t�
� ��) � ���

� ��) � ∆��),
where ∆��) is the maximum degree of �.
Lemma 1.1 [2] For a simple connected graph � with that |���)|�2, if there are adjacent vertices

with the same maximum degree, then
��t�
� � � ���

� � � ∆ � + ሼ. (1)
Conjecture [2] Let G(V,E)be a simple graph, then

��t�
� (G)� ∆+2. (2)

2. Main Theorems

Now we are ready to present our main theorems.
Theorem 2.1 Suppose the Mycielski graph of a path �� is����), then

��t�
� �����)) �

� + ሼ, � � �,3,4;
�, � � 5. (3)

Proof. Suppose the vertex set and edge set of����) are that ������))� ��ሼ, ��, �, ��, �ሼ, ��,

�, ��,tt and � � �� � �����+ሼ, ��t, ��t�� � ሼ, �,�,� � ሼt � ���������� � � �� ,� �

ሼ, �, �, �, � � ሼ, �, �, �t, respectively. Allow us discuss the following four cases..
Case 1 If � � �, owing to the fact that����) � �5, the conclusion is apparently true(see [2]).

Case 2 If � � 3, on account of the structure of����), we get that ��t�
� �����)) � 4 according

to lemma 1.1. To prove that ��t�
� � �� � 4 , only we need to prove that ����) has a

4-I-AVDETC.
Now construct the map from �����3)) to �1, 2, 3, 4t as follows
���ሼ) � �, ����) � ሼ, ���3) � 4, ��t) � ሼ; ����) � � +1, � � ሼ, �, 3;
���ሼ��) � ሼ, �����3) � 4; � �ሼ�� � � ���ሼ � �, � ���3 � � �3�� � 3;
� �ሼt � 3, � ��t � 4, � �3t � ሼ.
The � is 4-I-AVDTC of ���3) and at the same time, |�� |� 4 , � � ሼ, �, �, 4 . Thus, � is a

4-I-AVDETC of���3).

Case 3 If � � 4, as a result of the structure of ����), we get that ��t�
� �����)) � 5 according

to lemma 1.1. To prove that ��t�
� � �� � 5 , only we need to prove that ����) has a

5-I-AVDETC.
We get a total coloring � for����) as follows.
����) � �, � � ሼ, �, 3, ���4) � 5, ��t) � 5;
����) � �, � � ሼ, �, 3, 4, � ����+ሼ � � + ሼ, � � ሼ, �, 3;
� ����+ሼ � � + �, � � ሼ, �, 3, � �����ሼ � � � ሼ, � �2, 3,4;
� ��t � 6 � �, � � ሼ, �, � ��t � � � �, � � 3, 4.
The � is 4-I-AVDTC of���4), moreover,
|��|� 4, � � ሼ, 4, 5, |��|� 5, � � �, 3. Certainly, � is a 5-I-AVDETC of���4).

Case 4 If � � 5, as a result of the structure of ����), we get that ��t�
� �����)) � � according
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to lemma 1.1. To prove that ��t�
� � �� � � , only we need to prove that ����) has a

�-I-AVDETC.
We get a total coloring � for� �� as follows.
����) � �, � � ሼ, �,�,n, ��t) � �, ����) � �, � � ሼ, �,�, � � ሼ, ����) � �;
� ����+ሼ � � + ሼ, � � ሼ, �,�, � � ሼ; � ����+ሼ � � + �, � �1, �,�, � � �,
� ���ሼ�� � ሼ, � �����ሼ � � � ሼ, � �2, 3,�, �,
� ��t � � � � + ሼ, � � ሼ, �, � ��t � � � �, � � 3, 4,�, �.
We now show the � is �-I-AVDTC of����)

� �ሼ � �ሼ, �, 3t, � t � �, � �� � �� � ሼ, �, � + ሼ, � + �t, � � �, 3, �, � � �,

� ���ሼ � �ሼ,� � �,� � ሼ,�t, � �� � ��� ሼ,�t, � �ሼ � �ሼ,�t,
� �� � ��, 3, 4t, � �� � �ሼ,� � �t, � �� � �� � �, �, i+1t, � � 3, 4, �, � � ሼ;
meanwhile，|��|� 5, � � �, �, and |��|� 6, � �1, 3, �,� � ሼ.

So, the � is a �-I-AVDETC of����).
Theorem 2.2 Suppose the Mycielski graph of a cycle �� is����), then

��t�
� �����)) �

5, � � 3,4;
�, � � 5. (4)

Proof. Suppose the vertex set and edge set of ����) are that ������) ) � ��ሼ, ��,
�, ��, �ሼ,��, �, ��,tt and � � �� � � � �� � ��ሼ��,�ሼ��,���ሼt, respectively. We discuss in
the following four cases.

Case 1 If � � 3, in virtue of the structure of����), we get that ��t�
� �����)) � 5 according to

lemma 1.1. To prove that ��t�
� ����) � 5 , only we need to prove that ����) has a

5-I-AVDETC.
Now we construct a mapping � from �����3)) to �1, 2, 3, 4, 5t. Since � � �� �

� � �� � ��ሼ��,�ሼ��,���ሼt, we can acquire a � based on the � of���3) in Theorem 2.1. Firstly,
we let
���ሼ�3) � 5, ���ሼ�3) � 4, ���3�ሼ) � ሼ;
Secondly, we adjust the colors of t, ��t and �3t to be
� ��t � ሼ, � �3t � 5, ��t) � 5;
The colors of other elements are the same as the result of the � for���3) in Theorem 2.1, then

the adjusted � is 5-I-AVDTC of���3) and at the same time, |��|� 4, � �1, �, �, 4, |�5|� 3. Thus,
� is a 5-I-AVDETC of���3).

Case 2 If � � 4 , due to the structure of ����) , we get that ��t�
� �����)) � 5 according to

lemma 1.1. To prove that ��t�
� ����) � 5 , only we need to prove that there exists a

5-I-AVDETC for���4).
We get a total coloring � for���4) by adjusting the � of���4), let
���ሼ�4) � ሼ, ���ሼ�4) � 4, ���4�ሼ) � 5;

meanwhile, swap the colors of ���3 and �3�4, thus the new � is 5-I-AVDTC of���4), moreover,
|��|� 5 for all � �1, 2, 3, 4, 5. Certainly, � is a 5-I-AVDETC of���4).

Case 3 If � � 5, as a result of the structure of ����), we get that ��t�
� �����)) � � according
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to lemma 1.1. To prove that ��t�
� ����) � � , only we need to prove that ����) has a

�-I-AVDETC.
We can get a total coloring � for����) by the � of����), directly. We only let the additional

edges be coloring that
���ሼ��) � ሼ, ���ሼ��) � �, �����ሼ) � �;
We show easily that the � is � -I-AVDTC of ����) , for that compared with the results of

����) only four vertices’ sets are changed
� �ሼ � �ሼ, �, 3,�t, � �� � �ሼ, �, � � ሼ,�t,
� �ሼ � �ሼ, �,�t, � �� � �ሼ,� � �, �t;

at the same time，|�ሼ|� �, |��|� 6, � �2, 3, �,�.
So, the � is a �-I-AVDETC of����).
Theorem 2.3 Suppose the Mycielski graph of a fan �� is����), then

��t�
� �����)) �

�, � � 3;
��, � � 4. (5)

Proof. Suppose the vertex set and edge set of����) are that ������))� ��0, �ሼ, ��, �, ��, �ሼ,

�0, ��, �, ��, tt and � � �� � ��0��,����+ሼ,��t, �0t�� � ሼ, �,�, � � ሼ, � � ሼ, �,�,�t �

���������� � � �� , � � 0, ሼ, �, �, � , � � ሼ, �, �, �t , respectively. We discuss in the following two

cases.

Case 1 If � � 3, on account of the structure of����), we get that ��t�
� �����)) � � according

to lemma 1.1. To prove that ��t�
� ����) � � , only we need to prove that ����) has a

�-I-AVDETC.
Now we construct a mapping from �����3)) to �ሼ, �, �, �t as follows
����) � �, � � ሼ, �, 3, ���0) � �, ��t) � �;
���0) �4, ���ሼ) �1, ����) �5, ���3) �6;
���ሼ��) � �, �����3) � 3, ���0��) � � + 3, i � ሼ, �, 3;
� �ሼ�� � 6, � ���3 � �, � �3�� � 5, � ���ሼ � 4;
���0��) � � + 4, � � ሼ, �, 3; � �0t � � + ሼ, � � 0, ሼ, �, 3.
The � is a 4-I-AVDTC of���3) and meanwhile, |��|� 4, � � ሼ, �, �, �. Thus, � is a

�-I-AVDETC of���3).
Case 2 If � � 4 , since ����) has only one maximum degree vertex �0 , we get that

��t�
� �����)) � �� according to definition 1.1. To prove that ��t�

� ����) � ��, only we need to

prove that����) has a ��-I-AVDETC.
We obtain a total coloring � for����) as follows.
���0) � ��t) � ��, ����) � �, � � ሼ, �,�,� � ሼ, � �� � � � ሼ;
���0) � �, ���ሼ) � ሼ, � �� � � + � � ሼ, �=�, 3,�, �;
� ����+ሼ � � + ሼ, � � ሼ, �,�, � � ሼ; � �0�� � � + �,
� �0�� � �, � � ሼ, �,�, �; � �0�� � � + � � ሼ, � � ሼ, �,�, �;
� �����ሼ � � + � � �, � � �, 3,�, �, � ����+ሼ � � + � + ሼ, � � ሼ, �, �, � � ሼ,
� ��t � � � � + ሼ, � � ሼ, �,�,� � �,�, � ���ሼt � ��.
We now show the � is �-I-AVDTC of����)
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� �0 � �, � �ሼ � �ሼ, �, �, � + ሼ, � + �t,� t � ��, � + �, � + 3,�, �� − ሼt,

� �� � � �, � + ሼ, � + � � �, � + � � ሼ, � + �t, � � �, 3, �, � � ሼ,
� �� � ��, �� � �, �� � ሼ, ��t; � �0 � �ሼ, �, � + ሼ, �, �� � ሼt,
� �ሼ � �ሼ, �, �t, � �� � ��, � + ሼ, � + � � ሼ, � + �t, � � �, 3, �,� � �, �,
� ���ሼ � ��� ሼ, �� � �, �� � �, ��t;
moreover, |��|� 4, � � ሼ, �,�, � � ሼ, |��|� 5, � � �, � + ሼ, �,��.

So, the � is a ��-I-AVDETC of����).
Theorem 2.4 Suppose the Mycielski graph of a wheel �� is����), then

��t�
� �����)) �

�, � � 3;
��, � � 4. (6)

Proof. Suppose the vertex set and edge set of� �� are that ������))� ��0, �ሼ, ��, �, ��,
�0, �ሼ, ��, �, ��,tt and � � �� � ��� �� ) � ��ሼ��, �ሼ��, ���ሼt , respectively. First of all,
we deduce that ��t�

� ����3)) � � and ��t�
� �����)) � �� for � � 4 according the structure of

����) using the ahead theorem method. To prove the equation (6) to be true, we can easily
construct a mapping � such that � is a �-I-AVDETC of ���3) or a ��-I-AVDETC of � �� .
Since � � �� � ��� �� ) � ��ሼ��, �ሼ��, ���ሼt , we color the additional three edges
�ሼ��, �ሼ��, ���ሼ with colours 1, 3, 4, respectively, and keep the same coloring of other elements
with the � of � �� in theorem 2.3, then we can test and verify the updating � satisfying that
which is a �-I-AVDETC of���3) or a ��-I-AVDETC of� �� , and |��|� 4, � � �, 5, 6�, � �
ሼ, |�� |� 5, � � ሼ, 3, 4,�, � + ሼ, �, ��. Here we might note that when � are same number, the |��| is
assigned to the later. Thus, the conclusion (6) is obviously true.

3. Conclusion
In this paper, we investigate the incidence-adjacent vertex distinguishing equitable total coloring

of Mycielski graphs of path, cycle, fan, wheel and of which the incidence-adjacent vertex
distinguishing equitable total chromatic numbers are confirmed. We push ahead with the above
work by the following conclusion for the incidence-adjacent vertex distinguishing equitable total
chromatic numbers of Mycielski graphs. If the a Mycielski graph(� � ) has only one maximum
degree vertex or two and even more maximum degree vertices which are not adjacent, then
��t�
� � � � ∆ +1; if it has at least two adjacent maximum degree vertices, then ��t�

� � � �
∆ +2.
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